Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(23): 6772-6793, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578632

RESUMO

In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3-year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open-top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water-level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large-scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic-continental and temperate-boreal (subarctic) gradient (France-Poland-Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral-N-driven to a fungi-mediated organic-N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions.


Assuntos
Sphagnopsida , Traqueófitas , Ecossistema , Sibéria , Europa (Continente) , Solo , Água
2.
Sci Total Environ ; 903: 166225, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586524

RESUMO

Snow-farming is one of the adaptive strategies used to face the snow deficit in ski resorts. We studied the impact of a shifting snow-farming technique on a pasture slope in Adelboden, Switzerland. Specifically, we compared plots covered by a compressed snow pile for 1.5, 2.5 or 3.5 years, which then recovered from the snow cover for three, two or one vegetation seasons, respectively, with control plots situated around the snow pile. In plots with >1.5 years of compressed snow pile, plant mortality was high, recovery of vegetation was very slow, and few plant species recolonized the bare surface. Soil biological activity decreased persistently under prolonged snow cover, as indicated by reduced soil respiration. The prolonged absence of fresh plant litter and root exudates led to carbon (C) limitation for soil microbial respiration, which resulted in a significant decrease in the ratio of total organic carbon to total nitrogen (TOC/TN) under the snow pile. Microbial C, nitrogen (N) and phosphorus (P) immobilization decreased, while dissolved N concentration increased with compressed snow cover. Longer snow cover and a subsequent shorter recovery period led to higher microbial C/P and N/P but lower microbial C/N. Nitrate and ammonium were released massively once the biological activity resumed after snow clearance and soil aeration. The soil microbial community composition persistently shifted towards oxygen-limited microbes with prolonged compressed snow cover. This shift reflected declines in the abundance of sensitive microorganisms, such as plant-associated symbionts, due to plant mortality or root die-off. In parallel, resistant taxa that benefit from environmental changes increased, including facultative anaerobic bacteria (Bacteroidota, Chloroflexota), obligate anaerobes (Euryarchaeota), and saprophytic plant degraders. We recommend keeping snow piles in the same spot year after year to minimize the area of the impacted soil surface and plan from the beginning soil and ecosystem restoration measures.

3.
Glob Chang Biol ; 23(11): 4569-4580, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28464396

RESUMO

In temperate trees, the timings of plant growth onset and cessation affect biogeochemical cycles, water, and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been yet investigated in trees. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1,340 vs. 371 m a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease in air temperature in winter/spring resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we also found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in late summer. Budset of saplings that experienced a cooler winter was delayed by 31 days compared to the control, whereas it was delayed by only 10 days in saplings that experienced a warmer winter. Budburst timing in 2015 was not significantly impacted by the artificial advance or delay of the budburst timing in 2014, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.


Assuntos
Clima , Fagus/fisiologia , Estações do Ano , Árvores/fisiologia , Mudança Climática , Temperatura Baixa , Temperatura Alta , Desenvolvimento Vegetal , Árvores/crescimento & desenvolvimento
4.
J Environ Manage ; 111: 213-9, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22926750

RESUMO

Participation has emerged as an appropriate approach for enhancing natural resources management. However, despite long experimentation with participation, there are still possibilities for improvement in designing a process of stakeholder involvement by addressing stakeholder heterogeneity and the complexity of decision-making processes. This paper provides a state-of-the-art overview of methods. It proposes a comprehensive framework to implement stakeholder participation in environmental projects, from stakeholder identification to evaluation. For each process within this framework, techniques are reviewed and practical tools proposed. The aim of this paper is to establish methods to determine who should participate, when and how. The application of this framework to one river restoration case study in Switzerland will illustrate its strengths and weaknesses.


Assuntos
Participação da Comunidade , Conservação dos Recursos Naturais/métodos , Política Ambiental , Rios , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...